Derivatives of Exponential and Logarithmic Functions

Lecture 36 Section 4.3

Robb T. Koether

Hampden-Sydney College

Mon, Apr 3, 2017

Objectives

Objectives

- Be able to differentiate e^x and b^x .
- Be able to differentiate $\ln x$ and $\log_b x$.
- Work applications involving relative growth rates.

The Derivatives of e^x and b^x

The Derivatives of e^x and b^x

$$\frac{d}{dx}\left(e^{x}\right)=e^{x}.$$

The Derivatives of e^x and b^x

The Derivatives of e^x and b^x

$$\frac{d}{dx}\left(e^{x}\right)=e^{x}.$$

$$\frac{d}{dx}(b^x)=b^x\ln b.$$

The Derivatives of $\ln x$ and $\log_b x$

The Derivatives of $\ln x$ and $\log_b x$

$$\frac{d}{dx}(\ln x)=\frac{1}{x}.$$

The Derivatives of $\ln x$ and $\log_b x$

The Derivatives of $\ln x$ and $\log_b x$

$$\frac{d}{dx}(\ln x)=\frac{1}{x}.$$

$$\frac{d}{dx}(\log_b x) = \frac{1}{x \ln b}.$$

Relative Growth Rates

Relative Growth Rates

Recall that the relative rate of change of a function Q(x) is

$$\frac{Q'(x)}{Q(x)}.$$

Relative Growth Rates

Relative Growth Rates

Recall that the relative rate of change of a function Q(x) is

$$\frac{Q'(x)}{Q(x)}.$$

Recall also that

$$\frac{d}{dx}\left(\ln Q(x)\right) = \frac{Q'(x)}{Q(x)}.$$

Example 4.3.14

A country exports three goods, wheat W, steel S, and oil O. Suppose that that at a particular time T, the revenue, in billions of dollars, derived from each of these goods is

$$W(t) = 4$$
 $S(t) = 7$ $O(t) = 10$

and that S is growing at 8%, O is growing at 15%, while W is declining at 3%.

Example 4.3.14

A country exports three goods, wheat W, steel S, and oil O. Suppose that that at a particular time T, the revenue, in billions of dollars, derived from each of these goods is

$$W(t) = 4$$
 $S(t) = 7$ $O(t) = 10$

and that S is growing at 8%, O is growing at 15%, while W is declining at 3%.

(a) At what relative rate is total export revenue growing (or declining) at this time?

Exercise 4.3.76:

The national income I(t) of a particular country is increasing by 2.3% per year, while the population P(t) of the country is decreasing at the annual rate of 1.75%. The per capita income C is defined to be

$$C(t)=\frac{I(t)}{P(t)}.$$

Exercise 4.3.76:

The national income I(t) of a particular country is increasing by 2.3% per year, while the population P(t) of the country is decreasing at the annual rate of 1.75%. The per capita income C is defined to be

$$C(t)=\frac{I(t)}{P(t)}.$$

(a) Find the derivative of $\ln C(t)$.

Exercise 4.3.76:

The national income I(t) of a particular country is increasing by 2.3% per year, while the population P(t) of the country is decreasing at the annual rate of 1.75%. The per capita income C is defined to be

$$C(t)=\frac{I(t)}{P(t)}.$$

- (a) Find the derivative of $\ln C(t)$.
- (b) Use the result of part (a) to determine the percentage rate of growth of per capita income